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ABSTRACT
To better understand the demographics of their visitors and
their paths through their websites, the vast majority of modern
website owners make use of third-party analytics platforms,
such as, Google Analytics and ClickTale. Given that all the
clients of a third-party analytics platform report to the same
server, the tracking requests need to contain identifiers that
allow the analytics server to di↵erentiate between their clients.

In this paper, we analyze the analytics identifiers utilized
by eighteen di↵erent third-party analytics platforms and show
that these identifiers enable the clustering of seemingly un-
related websites as part of a common third-party analytics
account (i.e. websites whose analytics are managed by a single
person or team). We focus our attention on malicious websites
that also utilize third-party web analytics and show that threat
analysts can utilize web analytics to both discover previously
unknown malicious pages in a threat-agnostic fashion, as well
as to cluster malicious websites into campaigns. We build a
system for automatically identifying, isolating, and querying
analytics identifiers from malicious pages and use it to discover
an additional 11K live domains that use analytics associated
with malicious pages. We show how our system can be used to
improve the coverage of existing blacklists, discover previously
unknown phishing campaigns, identify malicious binaries and
Android apps, and even aid in attribution of malicious domains
with protected WHOIS information.
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1 INTRODUCTION
Web analytics is a necessary tool for modern websites to better
understand their users and how they interact with their con-
tent. Most web developers make use of third-party analytics
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platforms, such as, Google Analytics, Yandex Metrica, and
ClickTale, both because of their ease of adoption as well as
the typical presence of no-cost/“freemium” plans. For instance,
according to recent statistics from BuiltWith [2], 77.8% of the
web’s 1 million most popular sites utilize Google Analytics.

Given that all the clients of a third-party analytics platform
report to the same centralized backend, the tracking requests
emitted from web browsers need to contain identifiers that al-
low the analytics server to di↵erentiate between their clients. A
single identifier (referred to as ID throughout this paper) is often
shared across di↵erent websites that belong to the same account,
or to the same project in the analytics dashboard, thus e↵ectively
becoming a method of grouping websites together, even among
domains that otherwise seem unrelated. As a result, there exist
services for reverse lookups of Google Analytics IDs (e.g., Spy-
OnWeb [15] and SameID [13]) which are used, for example, by
journalists to reveal hidden connections between websites [18].

In this paper, we analyze the analytics identifiers utilized
by eighteen di↵erent third-party analytics platforms and show
that these identifiers allow for the clustering of seemingly
unrelated websites as part of a common third-party analyt-
ics account (i.e. websites whose analytics are managed by a
single person or team). We use this observation to perform
the first large-scale analysis of analytics utilized by malicious
content and quantify the extent to which matching analytics
IDs allows for the identification of new malicious content, the
clustering of malicious content into campaigns, and even the
deanonymization of malicious actors. To that extent, we design
and develop a reliable pipeline for parsing sources of malicious
content, identifying and extracting IDs associated with the
studied analytics services, and searching for new malicious
content that shares the extracted IDs in a threat-agnostic fashion,
i.e., being able to identify malicious content without tailored,
abuse-specific detection methods.

We use our system to crawl 145K malicious URLs provided
by VirusTotal on a daily basis for a period of two weeks and
identify a total of 9,395 unique analytics IDs associated with
malicious pages. Our system was able to, on average, discover
1,442 malicious analytics IDs per day, most of which belong-
ing to Google Analytics. Moreover, we extracted 872 analytics
identifiers from a two-year corpus of technical support scams
and other social-engineering attacks, allowing us to calculate
the lifetime of some scam campaigns to more than two years.
By searching for domains and URLs reusing the extracted IDs
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http://www.google-analytics.com/__utm.gif?utmwv=5.7.0&utms=3&utmn
=318899286&utmhn=www.fourfilerfis.com&utme=8(Nombre%20landing*
Hash)9(flash%20player%20-%20grey-fp*dnqO3b3R)&utmcs=UTF-8&utmsr
=1440x900&utmvp=1433x372&utmsc=24-bit&...&utmac=UA-41451094...

Figure 1: Example of a scam page that calls Google Analytics.

in the wild, we were able to discover 11K additional web-
sites and showed how the sharing of analytic IDs can allow
for the deanonymization of owners of domains, even when
WHOIS privacy solutions are utilized. Next, we show how
our analytics-ID-matching technique applies beyond regular
websites (to malicious mobile apps, suspicious extensions, and
malware binaries) and how we were able to utilize it to discover
13 phishing campaigns against popular websites. Finally, we
explain why evading our detection methods will not be trivial
for attackers as long as they find value in analytics, and we
describe how analytics companies can utilize their privileged
positions to assist in discovering malicious content and aid
law-enforcement identify the real culprits behind attacks.

2 BACKGROUND ON WEB ANALYTICS
For virtually all types of web analytics, web developers are
asked by the analytics service to embed a piece of JavaScript
code throughout their website. This JavaScript code includes
logic for tracking user visits and at least one identifier (referred
to as ID throughout the paper) that is used by the analytics
platform to later di↵erentiate between tracking requests of their
clients. When visitors load one of the corresponding pages
inside their browsers, the analytics script issues requests to
the analytics backend which collects tracking data about the
current visitor. The analytics services then aggregate the data
and make them available through a convenient web dashboard
which is made available to website owners.

At this point, it is important to note that while the analyt-
ics IDs embedded in websites need to be per-analytics-client
unique, they do not need to be per-domain unique. That is,
website owners can manage multiple websites as part of a single
project where, e.g., all the analytics requests for example.com,
example.net, and example.org are aggregated together. In this
case, the JavaScript code embedded in all three websites would
be utilizing the same analytics ID. This allows a third-party
observer to infer that these three domains are somehow related
(i.e. managed by the same person/team) even when the ID-
sharing domains are lexically di↵erent, are hosted on di↵erent
servers, and utilize WHOIS privacy solutions. Through our
experiments, we have found that this type of aggregation is
very common across both benign and malicious website owners
and can therefore be used for clustering seemingly-unrelated
websites together into campaigns.

Table 1: Comparison of popular web analytics

Web analytics Price Leaked ID Example ID

Google Analytics Free Account UA-22417551-1
Google Tag Manager Free Project GTM-N7R3KH

New Relic Insight Paid Account 9a40653a95
Yandex Metrica Free Project 42880164

Quantcast Free Account p-b6_rD1Ba7gEIM
StatCounter Free Project 7040321/0/9a83071e
Optimizely Paid Project 5328963582
CrazyEgg Paid Account 0023/6581

Clicky Free Project 101071552
Mixpanel Free Account 481d51295e...f5547
Segment Free Project 6q5KVhqz...6DONr

Mouseflow Free Project ↵5128b8-7...caba8
Chartbeat Paid Account 50874

Heap Analytics Free Project 429571327
Kissmetrics Paid Project e4756f9bee...c2dc3

ClickTale Paid Account 6ea876d3-3...b4f00
Gauges Paid Project 58caae4f4b...1c18a

W3Counter Free Project 63908

To gauge how well this ID-sharing observation generalizes
across di↵erent analytics services, we analyze 18 popular ser-
vices o↵ering general web analytics (listed in Table 1 according
to their popularity, as reported by BuiltWith [2]). One can no-
tice that the majority of services provide an option of no-cost
subscription, which makes them even more attractive for web-
site owners. Upon signup to any web analytics service, a web
developer gets an ability to set up a project, which may or may
not require to specify targeted domains. We want to empha-
size that even if specific domains are specified in the analytics
dashboard, tra�c statistics are collected across di↵erent origins,
and thus the analytics script can be distributed across di↵erent
websites at the discretion of the web developer. In this case, the
analytics request from each website contains the same project
ID, which can be used to associate them. Moreover, even if
the website owner creates a separate analytics project per each
monitored domain, there are services that still require a separate
account identifier, such as, Google Analytics. Specifically, each
Google Analytics account can create up to 100 identifiers of the
following format UA�XX...XX�YY, where UA�XX...XX is
the constant account ID. Similarly, tracking requests to New
Relic Insight include a “global license key” which is common
across all websites managed by a single account.

The exact format of each service’s analytics ID influences the
di�culty of correctly identifying other websites that share a
given ID. For example, as shown in Table 1, Yandex Metrica
uses a highly ambiguous format consisting of a short string
of digits. In order to find other websites using the same ID,
we need to crawl as many websites as possible and either dy-
namically locate requests to Yandex backend servers as they
are occurring, or statically attempt to locate Yandex-related
JavaScript code which may be further complicated through the
use of minimization and obfuscation.

Contrastingly, ClickTale utilizes longer strings (e.g., “6ea876
d3-3...f00”) while StatCounter uses a combination of the project
ID and additional identifier (e.g., “/7040321/0/9a83071e/1/”). In
bothcases, theresultingIDsaremorelikelytobegloballyunique,
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and thus can be searched with generic search engines that index
the source code of web pages (such as, PublicWWW [11] and
NerdyData [5]). Furthermore, the specific format of some ana-
lytics providers, such as, Google Analytics and Google Tag Man-
ager, provide us with the ability to not only search for a specific
ID, but to retrieve all the identifiers while statically analyzing a
page’s source code (e.g., all IDs of the format GTM�XXXXXX).

Finally, it is worth pointing out that the aforementioned an-
alytics services are not necessarily limited to websites. Browser
extensions can straightforwardly utilize web analytics by in-
cluding the appropriate JavaScript code in their background
pages [33] while Android APKs can include analytics SDKs
that emit the appropriate HTTP requests that are recognized by
the analytics backend servers. In addition to Google Analytics
and Google Tag Manager which are available for both websites
as well as Android apps, we analyzed the following mobile-
specific, analytics services: FireBase, Appflyer, App Metrica,
Flurry, Umeng, and Adjust. Google Analytics, FireBase, and
Appflyer leak a global analytics account ID with each tracking
request, whereas the remaining register unique application IDs
for each separate app.

3 DATA COLLECTION AND ANALYSIS
In this section, we describe our pipeline for mining analytics IDs
from di↵erent sources of malicious URLs, browser extensions,
and mobile applications.

3.1 Analytics IDs from malicious websites
For our project we utilize two sources of malicious URLs: i)
daily lists of malicious URLs from VirusTotal and, ii) URLs
and HTML code of typosquatting domains and the destination
URLs of ad-based URL shorteners, kindly provided to us by
Miramirkhani et al. [28]. Given these two sources, extracting
analytics IDs from malicious websites appears, at first, straight-
forward. One would need to merely visit each URL, identify
the presence of one or more analytics providers, and isolate
the utilized analytics IDs. Unfortunately, the following reasons
complicate this seemingly straightforward process:
• When visiting a malicious URL some time after it was first re-

ported, the resulting page may now be operated by a domain
parking company with its own benign analytics.
• Whentrustingthird-partyverdictsabout themaliciousnessof

agivenURL, it isunclearwhichpartof thepagewasmalicious,
i.e., the main page versus a particular iframe embedded in the
page. Malicious pages may include benign content and vice
versa, both of which may be utilizing their own web analytics.
To account for these complications during the VirusTotal

crawl, we deploy a set of filters, as shown in Figure 2. First, after
crawling URLs from VirusTotal, we extract the pairs of valid
analytics IDs and actual domain where they were found (i.e. the
domain of the main page or that of an iframe). We then check
whether that domain was malicious according to VirusTotal
and discard those that are reported as benign, allowing us
to remove many instances which would otherwise be false
positives. Second, we filter out whitelisted domains and known
benign analytics IDs from websites in the Alexa top 100K.

During pilot experiments, we discovered that domains re-
sulting from these two filtering steps still contained a large
number of false positives. These false positives were mainly
due to a few common analytics IDs that were present in large
numbers of pages that are part of the lifecycle of a malicious
URL but are not malicious in-and-of themselves. For example,
the error pages shown by hosting providers when they have
suspended a user’s account (a common reaction to a malicious
URL) may all share the same analytics ID. Thus, if we do not
exclude these pages, we would be marking all domains that
were suspended/deleted as malicious. To account for such cases,
we utilize PublicWWW and SpyOnWeb (two search engines
for HTML code) to find other domains with pages that utilize
the same analytics ID and ignore a given ID if it is used by more
pages than an empirically discovered threshold (500 domains
according to our experiments). Our rationale for this thresh-
old is that, if we discover more than 500 unpopular domains
all of which share the same analytics ID and some of which
are marked as malicious, we consider it more plausible that
these are related to a known benign service rather that they are
managed by a single dedicated attacker.

Contrastingly, because Miramirkhani et al. [28] provide us
with both HTML code as well as URLs, we can develop our
own heuristics for identifying a malicious page and if those
heuristics match a page that contains an analytics ID, we can
immediately isolate and extract that ID. Given the nature of
their project and data sources, we search through the HTML
and JS corpus for keywords associated with technical support
scams, toll-free phone numbers, and messages indicating that
we need to download new software (e.g. missing codecs), or
update our existing one (e.g. update Flash, Chrome, or Java).

To faithfully mimic a user who lands on a malicious domain,
our crawler is based on the headless Chrome Browser. Our
crawler is capable of intercepting JavaScript alerts, simulate
clicks,andextractanalytics identifiers frombothnetworktra�c,
as well as the page’s HTML code and browser DOM. By running
our crawler on multiple machines, we are able to crawl and ana-
lyze over 10 million domains per day. All network tra�c and ex-
tracted analytics IDs are stored in database for further analysis.

The statistics described in the remainder of the paper, are
based on the following datasets:

• Three daily sets of malicious URLs reported by VirusTotal
(VT) inAugust2017andfourteenconsecutiveVTURLdumps
from September 2017. Each set consists on average of 145K
unique URLs belonging to 24.3K unique TLD+1 domains.
For example, just for the September, we crawled more than
two million URLs on 340,873 unique domains.
• The domains from Miramirkhani et al. [28] include almost

two years of crawling 10,000 typosquatting domains daily
from September, 2015, and a set of 3,000 shortened URLs
from top ad-based URL shorteners starting from April, 2016.

Finally, we make use of a commercial URL filtering service
belonging to Palo Alto Networks, a network and enterprise
security company, which provides its customers with URL
categories including: malware, phishing, adult, drugs, and
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Table 2: Mining malicious analytics IDs

Web analytics IDs Domains Potential Verified Unseen

Google Analytics 7,945 8,182 27,472 10,901 8,132
Yandex 816 912 - 1,364 971
Google Tag Manager 278 289 1,598 683 564
StatCounter 155 144 - 22 20
Clicky 58 68 - 113 83
New Relic Insights 55 107 - 803 779
Quantcast 46 56 336 113 101
CrazyEgg 13 17 - 0 0
Optimizely 11 12 - 4 2
MouseFlow 9 9 - 4 1
Mixpanel 5 5 - 272 272
Segment 2 2 - 0 0
ClickTale 1 1 - 1 0
Heap Analytics 1 1 - 0 0
Overall 9,395 9,226 - 14,267 10,921

new crawls). As before, the recurrent reuse of analytics means
that attackers are deploying the same analytics code, across
multiple malicious pages.

In contrast with the VirusTotal source, the data provided to
us by Miramirkhani et al. [28] is by definition skewed towards
social-engineering attacks, particularly of the fake technical
support kind. From that data, we were able to extract 872 unique
Google Analytics IDs across 3,185 domain names. Most of these
IDs (89.2%) were located on technical support scams while the
remaining ones were on other types of scam pages, such as,
fake surveys and fake plugin updates.

Interestingly, while 51.8% of these analytics IDs were only
observed for a single day, there were other IDs that belonged
to long-running campaigns (overall, average lifetime was 46
days). For example, using a common Google Analytics ID, we
observed a fake-survey campaign that was live for at least 764
days (UA-11040674 seen on 4 captured domains) and a separate
fake Flash Player update / fake technical support campaign that
was live for at least 730 days (UA-67441257 seen on 44 captured
domains). The fact that these campaigns lasted for over two
years, suggests not only that these attackers are able to avoid
detection for prolonged period of time but also that our pro-
posed method of utilizing analytics IDs to discover campaigns
of seemingly unrelated URLs is currently not utilized.
Discovering malicious web campaigns. Having a set of an-
alytics IDs associated with malicious websites allows us to
search for the same IDs in the wild and discover previously-
unreported malicious websites. Using two code search engines
(PublicWWW and SpyOnWeb), we were able to find other
known domains for more than 63% of the 9,395 malicious an-
alytics IDs discovered from our VT crawls. Table 2 shows how
many potentially-malicious domains we discovered, and how
many of them were verified with our own crawlers to still have
the matched analytics IDs. We restrict the potential results to
analytics providers with su�ciently distinct ID formats (de-
scribed in Section 2) to ensure that we are really discovering
analytics-related identifiers.

Overall,wewereable todiscover14,267 livewebsitescontain-
ing malicious analytic IDs, 76.5% of which were new, previously
unseen domains, i.e., not part of our VT-sourced URLs. As Ta-
ble 2 shows, for many analytics providers, we are able to at least
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Figure 4: Discovery rate of malicious analytics IDs during the daily
crawl of VirusTotal feed.
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Figure 5: Discovery rate of malicious Google Analytics domains
during the daily crawl of VirusTotal feed.

double the number of known live malicious domains from our
VT seeds (e.g, we discovered another 8,132 Google analytics
domains reusing analytics IDs from the original 8,182 domains),
and presumably can at least triple the number if we include
potentially or formerly malicious websites (e.g. 27K Google
analytics domains for the original 8.1K domains). Moreover, by
querying VT about our newly-discovered domains, we find that
the vast majority of new websites have successfully avoided
detection, i.e., only 18.9% of the newly discovered websites are
marked as malicious. We argue that this shows the power of this
techniquesince itcanassociateseeminglybenignwebsites tothe
same adversaries operating the more explicitly malicious ones.

Figure 5 shows the daily rate on the number of newly dis-
covered domains reusing malicious Google Analytics IDs. We
observe the same peak on 10/02 as we did in the daily number
of VT-sourced malicious IDs (Figure 4). Using this approach
one can expect to, on average, be able to associate 364 new,
previously unseen, malicious domains per day, which share
analytics IDs with existing malicious domains (considering
results starting from 09/27). Similarly, we were able to iden-
tify 2,926 other domains (with 2,821 being newly discovered)
for 33.6% of the 872 scam-related Google Analytics IDs. Out
of those, 836 were still active at the time of this writing with
95% of them being flagged as malicious by VirusTotal scan-
ners. Many examples like error01234567890microsoft.xyz (com-
bosquattingdomain[26]utilizedfor technicalsupportscams)or
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Figure 6: Example of “unknown” website detected via UA-81239183.
Each click navigates to a di↵erent scam page.

Table 3: Intersection with “unknown” websites

Web analytics # IDs # Domains

Google Analytics 122 774
Yandex 16 671

Google Tag Manager 7 108
New Reli cInsights 5 26

Clicky 4 3
Optimizely 3 79
CrazyEgg 2 28

MouseFlow 1 72
Mixpanel 1 25
Quantcast 1 1

Overall 162 1785

search-privacy.online (potentially unwanted programs) were
discovered to be threats by matching Google Analytics.
Domain and Campaign Forensics. The ability to, given a list
of malicious analytics IDs, identify other websites sharing these
IDs, allows for a number of powerful forensic applications
including: i) estimating the size of malicious campaigns, ii)
identifying common attackers behind diverse attacks, and iii)
deanonymizing malicious actors. In terms of campaign-size,
usingtheVT-sourcedURLs,wewereabletofindanaveragecam-
paign size of 7.6 domains, with the largest campaign including
480 domains (note that this is a lower bound on the largest size
as we decided to cut-o↵analytics IDs with more than 500 discov-
ered domains as those may include false-positives). Similarly,
for the scam-related dataset, the average campaign size was 3.6
with the largest campaign including 293 domains. By analyzing
some of the scam-related data we were able to identify one New
Relic Analytics ID (“bfd2c38d50”) which was associated with
both technical support scams as well as phishing domains. This
finding suggests either that one attacker/team is responsible
for a wide-range of attacks, or that they have outsourced their
analytics to the same entity. In both cases, this identified “link”
can be powerful for both expedient take-downs as well as for
identifying the culprits by law-enforcement.

Finally, we were able to deanonymize 59 malicious actors
behind VirusTotal URLs by finding public WHOIS records for
other domains sharing the same analytics IDs. This means that
as long as an, otherwise careful attacker who uses WHOIS
privacy and fake registration details, links at least one onymous
domain to the same analytics account, this can be used to link
all of the anonymously-registered domains back to him. For

Table 4: Querying benign and malicious samples

Google Analytics # Benign # Malware

Top IDs from VirusTotal URLs
UA-43126514 137 23,333
UA-69254683 3 605
UA-74694740 22 541

UA-260627 52 520
UA-63404602 0 204

Top IDs from scam pages
UA-56634126 19 8,609
UA-41451094 16 892
UA-72722497 272 37
UA-82355406 166 26
UA-61108112 0 21

example, Google Analytics ID UA-58907283 was originally
found on verification-login.com from VirusTotal, and later was
discovered on many phishing pages for Instagram. The same
analytics ID was present on ccg.gal which had public WHOIS
information, including the registrant’s email address. Other
examples include deanonymization of suspicious online shops
and web pages that distribute suspicious software.
Preventing unknown attacks. To further evaluate our threat-
agnostic, analytics-ID-matching, method of finding and cor-
relating malicious websites, we extracted the analytics IDs
from the UNKNOWN_URLs dataset (the list of URLs whose
categorization was unknown, as described in Section 3.1) and
calculated the overlap with our 9,395 malicious analytics IDs.
Table 3 shows the number of overlapping IDs across services
and the number of previously unlabeled domains that we could
associate with known malicious URLs. Figure 6 shows an exam-
ple of “unknown” website matched via UA-81239183, a Google
Analytics from another website known to be malicious by 5
reputable scanners from VirusTotal. Each click on that website
navigates the user to a di↵erent scam page. Other examples
include UA-89467400 found on over 63 “unknown” websites,
each leading to a di↵erent scam (like harbiturk.xyz or digiz.xyz).
Intersection between web and malware. Knowing that more
than 173K malware samples send requests to Google Analyt-
ics (Section 3.2), we decided to quantify the possible overlap
between the malware IDs and those of malicious websites.
Specifically, we calculated the intersection of 7,945 Google An-
alytics IDs collected from our VirusTotal crawl and the 872 IDs
found on scam pages, with the ones present in the HTTP tra�c
dumps of malicious APKs and malware binaries for di↵erent
OS. Overall, 29 matched in former case, and 35 in the later.
Table 4 presents the most popular of the common IDs.

Forexample,UA-43126514is foundinthetra�cof23,333mal-
waresamples.ThemostrecentpublicsampleonVirusTotal isde-
tectedas“SoftPulse”by53outof64AVengines.This typeofmal-
ware exhibits dropper behavior (downloading additional mali-
cious software) and modifying registry entries. The same analyt-
ics ID is found on many domains that deliver PUPs in the form
of video players (e.g. vidplayer.net and magnoplayer.com). Sim-
ilarly, UA-56634126 with 8,609 matches in tra�c from malware
binaries has been spotted on domains that distribute suspicious
versions of MacKeeper and other tools to repair Mac computers.
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Table 5: Extensions found over intrusive install pages

# Users # Extensions Example

1-4MM 29 Search Manager (searchmgr.com)
100K-1MM 88 Movie Search (softorama.com)

10K-100K 91
betterMovies Search

(bettersearchtools.com)
0-10K 29 LastLogin Now (lastlog.in)

Unknown 78 Private Search Plus

To better understand the overlap between benign and mali-
ciousIDs,werandomlysampledafewof the137benignbinaries
with the UA-43126514 ID and resubmitted them to VirusTotal.
There, we saw that most of them were now detected as malware
by at least 15 AV engines. This result further strengthens the idea
that matching analytics IDs can reveal the true malicious nature
of a seemingly benign binary, before that binary is eventually
detected as malware by traditional AV engines.

4.2 Analytics from browser extensions
During our crawl of potential scam pages, we were able to col-
lect 333 unique extension IDs. During the manual investigation
of some of these extensions, we noticed that some of them were
benign, highly popular extensions and therefore, as described
in Section 3.2, we filtered out all extensions that were installed
by more than 4 million users.

Our filtered list contained 315 extensions served over 11,096
unique URLs hosted on 86 unique TLD+1 domains. Table 5
shows a number of these extensions to allow the reader to
develop an intuition of the types of malicious extensions that
are o↵ered to users. Across di↵erent rankings, we observe ex-
tensions which are detected as Potentially Unwanted Programs
(PUPs) according to di↵erent AV sources (e.g., “safe4search”
extension with 5,742 users [4] and “BlpSearch” extensions with
332,610 users [1]). At the time of our analysis we were able
to download only 255 extensions, while the remaining ones
were no longer hosted on the Chrome Store. Almost half of the
collected suspicious extensions (43.5%) belong to the “Search”
category which allows them a reasonable cover for requesting
full permissions across all tabs and websites of a user’s browser.

Out of 255 extensions that we could successfully download
and unpack, we found Google Analytics IDs on 120 extensions.
Overall, we detected 70 unique Google Analytics accounts
which is already evidence of ID sharing across extensions. For
example, UA-98374100 is utilized in 14 di↵erent Chrome exten-
sions, with installation base ranging from 10K to 162K active
users, all developed by a developer called “Better Search Tools.”
In other cases, we can associate two di↵erent extension devel-
opers, such as in the case of UA-48154225 used by SearchAssist
Tools fromsearchassist.net (4,221 users) andsimilarly named ex-
tension from privacyassistant.net (4,636 users). By attempting
to revisit these extensions two weeks later after our initial crawl,
we noticed that both had been deleted from the Chrome Store.

Using the two aforementioned code search engines (Pub-
licWWW and SpyOnWeb) we searched for these 70 extension-
originating analytics IDs and found 264 websites which utilized
one of these IDs. Among others, we found that UA-101669006

Table 6: Analytics in malware Android APKs

Analytics # IDs # Hits Non Mal. Benign

App Metrica 12,622 13,445 32.9% 2.4%
Umeng 5,196 92,442 9.6% 0.3%

Google Analytics 551 379 22.7% 10.6%
FireBase 350 136 55.9% 32.4%

Localytics 9 1 100.0% 0.0%
Google Tag Manager 3 0 0.0% 0.0%

Flurry 2 1 0.0% 100.0%
AppsFlyer 1 1 0.0% 0.0%

Overall 18,734 100,379 9.7% 0.2%

is used on medianetnow.com (associated with the developer of
a specific suspicious extension) and on a set of domains that fol-
low the nextlnkN.com format, where N can be substituted with
di↵erent integers and redirect users to a page requesting the
installation of an extension. Our VirusTotal feed exhibits similar
results with an average of 54 unique extensions discovered per
day, half of which also belong to the “Search” category.

4.3 Analytics from malicious Android apps
Overall, from 477,829 malicious APKs, we retrieved 18,734
unique analytics identifiers over 273,232 samples. For example,
the Google Analytics ID UA-77544562 is present on 8 malware
APKs, labeled as Android.Trojan.Dropper. Table 6 shows the
distribution of malware-related IDs across popular mobile an-
alytics. Compared to web analytics, Google Analytics is not the
most popular choice among malicious actors, taking the third
place after by App Metrica and Umeng.

Separately, we tested the detection possibilities enabled by
our threat-agnostic, analytics-matching scheme. For that, we
collected a testing sample of 330,117 newer APKs from late
September 2017. By matching analytics IDs found on previous
malicious samples, 100,379 unique APKs were flagged as mal-
ware. Of them, 9,775 were classified by Palo Alto Networks’
systems as not malicious, however, with 9,332 marked as gray,
289 as unknown, and only 154 received the stronger “benign”
verdict. This means that our system can complement existing
static/dynamic-analysis malware classifiers and assist in reduc-
ing potential false negatives (gray and unknown samples) with
low rate of newly introduced false positives (benign samples).
Table 6 shows the classification results for all mobile analytics.
Among others, we find that Umeng analytics IDs helped to
detect the largest fraction of malicious Android apps.

An interesting case was the Google Analytics ID UA-2126908,
which was found among many malware APKs, and also on 12
websites related to distribution of cracked mobile apps (like
iphonecake.com or directapk.net).

5 DETECTING PHISHING WEBSITES
In this section, we present separate results for phishing and
how analytics-ID matching can assist in the quick identification
of phishing websites. While crawling URLs from our VirusTotal
feeds, we noticed many cases of phishing websites, such as the
ones targeting PayPal and LinkedIn users. We were surprised to
discover that these types of phishing websites often include the
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Figure 7: Example of a phishing website that includes original benign
analytics ID from Airbnb.

Algorithm 1 Pseudocode for detecting phishing websites
target_URLs getPotentialTargets(...)
target_IDs crawlAnalyticsIDs(target_URLs)
for website in unknown do

f ound_IDs crawlAnalyticsIDs(website)
for f ound_ID in f ound_IDs do

if f ound_ID in target_IDs then
f ound_Target website( f ound_ID)
if not hasDowngradedTLD(website, f ound_Target) then

continue
if not hasLowerRank(website, f ound_Target) then

continue
reportSuspectedPhishing(website)

benign analytics IDs of their victim websites and were therefore
initially whitelisted by our approach of filtering out websites
that utilize analytics IDs present in popular Alexa websites.
By investigating the rest of their source code we came to the
conclusion that the reason why these phishing websites reuse
the benign analytics IDs of their victims is because the software
that is used to clone the benign websites, does not remove/sub-
stitute the analytics code. Popular phishing frameworks like
Social Engineering Toolkit (SET) [14] and Gophish [6] make
cloning websites a streamlined process yet they do not account
for analytics code.

We can therefore take advantage of this behavior to identify
phishing websites by matching the analytics IDs present in un-
labeled websites with those of popular websites that are often
targeted for phishing. Algorithm 1 shows the high-level steps
involved in our approach. We start by monitoring the daily
lists of phishing websites from the OpenPhish project [8] which
allows us to identify the websites most commonly targeted. We
amplify that list by manually adding labels wherever they were
missing and adding social networking websites and booking
websites to the lists of potential victims. Given our final list of
270 potential targets, we can automatically crawl the benign
websites, extract the benign analytics ID associated with each
website, and then search for the presence of these IDs in our
sources of malicious URLs.

Next, we use additional filters to automatically remove po-
tential false positives. For example, we select only cases with
downgraded TLDs (e.g., if the original target is a ".com" website,
we match other analytics-ID-sharing websites hosted on ".xyz",
".online", or on a raw IP address). We also filter out popular
domains, i.e., ones that appear in Alexa’s top 100K, as those that
are sharing IDs are most likely managed by the same entities.
While false positives do remain, these can be further filtered-out
by investigating the IP address space and Autonomous System

Table 7: Phishing campaigns detected during study

Target domain Web analytics # Domains

us.battle.net GA 12
www.airbnb.com GA, GTM 10
dailymail.co.uk GA 4

www.flixster.com GA, Quantcast 4
serasaexperian.com.br GA, GTM 2

www.hotwire.com GTM, Optimizely 2
lonelyplanet.com GA, GTM 1

made-in-china.com GA 1
metrobankonline.co.uk GA, GTM 1

microsoft.com Optimizely 1
www.bnz.co.nz GA 1

www.irs.gov GA, New Relic 1
www.singtel.com GA 1

on which the suspicious website is hosted. We argue, however,
that each and every one of these matches is suspicious enough
to warrant the attention of a human analyst.

After applying Algorithm 1 to the two-week collection of
“unknown” websites (UNKNOWN_URLs dataset, described
in Section 3.1), we could identify 13 phishing campaigns (e.g.,
Figure 7). Table 7 lists the discovered phishing targets, associ-
ated web analytics, and the number of unique domains used to
distribute the phishing attacks. We recorded attacks on the Bat-
tle.net gaming portal, Airbnb booking platform, email services,
and bank accounts. Usually the attackers used phishing replicas
hosted on .xyz, .club, .online domains or links including IP
addresses. We also found examples of .com and .ru TLDs to be
gateways leading to the final phishing pages, and, interestingly,
a replica of the IRS website was found on a .ru domain.

6 DISCUSSION
Summary of findings. Our results from the previous sections
clearlyindicatethatnotonlydomaliciousactorsutilizeanalytics
in their attacks, but also that they reuse analytics IDs across web-
sites and even across platforms. We showed that using analytics
IDs extracted from known malicious websites allows analysts
to double the number of malicious websites, group seemingly
unrelated websites into campaigns, and deanonymize mali-
cious actors hiding behind WHOIS privacy proxies (Section 4.1).
Using the same ID-matching technique, we were able to iden-
tify hundreds of intrusive browser extensions in the Chrome
Store and cluster extensions together, even when those claimed
to be developed by di↵erent developers (Section 4.2). Finally,
we showed that the same techniques apply to mobile mal-
ware (Section 4.3) and we uncovered a design error of modern
website-cloning tools that enables the detection of phishing
websites by the mere fact that they reuse the analytics IDs of
their victims (Section 5).
Analytics providers. Given our findings, we see many av-
enues where existing web analytics providers can assist in the
identification of malicious websites and in the attribution of
these websites back to unscrupulous individuals. The analytics
providers that we investigated in this paper are clearly in the
position, given an analytics ID, to identify all the websites asso-
ciated with this ID and potentially all other websites managed
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by the same account. We argue that this information, together
with details about the owner of a given analytics account, would
be invaluable for law-enforcement purposes. Moreover, ana-
lytics platforms can help website owners in identifying active
phishing websites, by warning them about the existence of a
new domain that is sharing an analytics ID with their current
domain and exhibits suspicious behavior.
Attacker adaptation. Even though attackers can, as a result of
this work, change their modus operandi for launching attacks
and utilizing web analytics, a change that is e↵ective for eva-
sion purposes is harder than it might first appear. For example,
even though some attackers may start utilizing their own web
analytics platforms (backed by software such as OWA [7] and
Piwik [10]), these analytics backends will clearly only be uti-
lized by malicious websites and can therefore become signals
of website maliciousness, similar to Indicators of Compromise
(IOCs) present in benign but compromised websites [22]. Alter-
natively, if they identify lesser known analytics platforms that
o↵er stronger privacy guarantees, they would still be standing
out, assuming that the vast majority of benign websites keeps
utilizing the popular analytics platforms investigated in this
paper. Even then, these analytics platforms could still assist
law-enforcement in identifying the operators of malicious web-
sites. Finally, even though website-cloning software can be
modified so that it does not clone the victim analytics ID, the
ID present on the benign website can be bound to the visual
representation of that website and form a stronger website
identity. Phishing-discovery tools can use the absence of such an
ID from websites that are visually similar to popular phishing
targets, as an extra signal for identifying new phishing attacks.
Method generalization. In this work we report on the e↵ective-
ness of associating analytics IDs for detection and discovery
of malicious websites and other malware. At the same time, we
argue that the developed method can be generalized to support
other artifacts of the modern web and mobile applications,
which tend to be shared and are likely to be used by malicious
actors. Examples include payment addresses, a�liation iden-
tifiers, generated code snippets with license tokens, accounts
for di↵erent widgets and services. As with analytics IDs, we
expect similar challenges in extracting the identifiers, reducing
false-positives, and evaluating the e↵ectiveness in order to
assign proper threat scores to the discovered matches.

7 RELATED WORK
The motivation to this work came from an article by Lawrence
Alexander about discovering hidden connections of websites
via Google Analytics IDs [17]. Specifically, Alexander used
shared Google Analytics IDs to reveal pro-Kremlin web cam-
paigns [18]. At the same time, there already exist services for
reverse Google Analytics lookups, such as, SpyOnWeb [15],
SameID [13], domainIQ [3], and RiskIQ [12]. However, to the
best of our knowledge, we are the first to generalize the ID-
sharing problem to many analytics services and perform a
large-scale analysis of the applicability of this technique for
identifying malicious websites, clustering malicious content,
and performing cross-platform attribution.

In general, the detection of malicious websites by inspecting
HTTP requests and responses is a known approach, e.g., Kosba
et al. [27] created ADAM, a system that evaluates network meta-
data by rendering web pages in a sandbox. A cross-layer detec-
tion model was developed by Xu et al. [35], considering both
network and application level features. Drew et al. [24] investi-
gated the HTML similarities of replicated criminal websites and
Cova et al. [23] analyzed the phishing websites created by “free”
phishing kits. Invernizzi et al. [25] proposed the idea of discover-
ing more malicious pages by leveraging the crawling infrastruc-
ture of third-party search engines, which is conceptually similar
to our method of discovering other domains using the same an-
alytics IDs. Catakoglu et al. [22] showed that it is possible to use
high-interaction honeypots to automatically extract Indicators
of Compromise that can be then used to identify compromised
websites inthewild.Eventhoughourmethodisfocusedoniden-
tifying malicious infrastructure, it could also, in principle, be
usedto identifycompromisedwebsiteswhereattackers injected
their own analytics IDs. Similarly, there has been substantial
work in the behavioral analysis and classification of HTTP-
based malware [29, 31, 32], mainly focusing on the network
traces between malware installations and attacker-controlled
servers. In addition, Aresu et al. [19] research the clustering of
Android malware based on HTTP tra�c, and Zheng et al. [36]
propose a signature scheme for associating Android malware.

Most of the recent antiphishing research is based on crowd-
sourced solutions like PhishTank [9] and OpenPhish [8], detect-
ing visual similarities [34], detecting suspicious URLs [21], and
proposing machine learning models [16, 37]. Morever, some
studies investigate source code features [20] and anomalies in
HTTP transactions [30], but do not consider the presence or
absence of analytics ID as a feature.

8 CONCLUSION
In this paper, we investigated the design of 18 third-party an-
alytics services and the reuse of analytics IDs across websites.
Focusing on malicious sites, we showed that attackers share
analytics IDs across URLs and even across platforms. We de-
veloped a pipeline for e�ciently and accurately isolating and
extracting analytics IDs from malicious websites, extensions,
binaries, and mobile apps and showed that using our system we
can discover tens of thousands of new malicious URLs and per-
form attribution of malicious domains even when they utilize
WHOIS privacy protection services. Finally, we described how
we can take advantage of an oversight of website-cloning tools
for identifying phishing campaigns in the wild and discussed
how analytics services can take advantage of their already-
collected data to aid in the identification of malicious websites
and the individuals behind them.
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