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Abstract 
Most modern applications are empowered by online services, so application developers frequently implement 
authentication and authorization. Major online providers, such as Facebook and Microsoft, provide SDKs for 
incorporating authentication services. This paper considers whether those SDKs enable typical developers to 
build secure apps. Our work focuses on systematically explicating implicit assumptions that are necessary for 
secure use of an SDK. Understanding these assumptions depends critically on not just the SDK itself, but on 
the underlying runtime systems. We present a systematic process for identifying critical implicit assumptions 
by building semantic models that capture both the logic of the SDK and the essential aspects of underlying 
systems. These semantic models provide the explicit basis for reasoning about the security of an SDK. We 
use a formal analysis tool, along with the semantic models, to reason about all applications that can be built 
using the SDK. In particular, we formally check whether the SDK, along with the explicitly captured 
assumptions, is sufficient to imply the desired security properties. We applied our approach to three widely 
used authentication/authorization SDKs. Our approach led to the discovery of several implicit assumptions in 
each SDK, including issues deemed serious enough to receive Facebook bug bounties and change the OAuth 
2.0 specification. We verified that many apps constructed with these SDKs (indeed, the majority of apps in 
our study) are vulnerable to serious exploits because of these implicit assumptions, and we built a prototype 
testing tool that can detect several of the vulnerability patterns we identified. 

 

1 Introduction 

Modern applications commonly consist of a client pro-
gram and an online service that provides functionality 
such as cloud storage, social networking, and geograph-
ic data. Accessing the service requires authentication of 
users and authorization of resource requests. Tradi-
tionally, the authentication and authorization mechan-
isms were provided by operating systems and carefully 
implemented in a few core apps such as SSH, remote 
desktop, etc; with modern apps, however, many develo-
pers end up needing to implement such mechanisms. To 
aid this, major identity providers have developed SDKs 
that developers can use to integrate authentication and 
authorization into their apps such as the three SDKs we 
study in this work: the Facebook PHP SDK, the 
Microsoft Live Connect SDK, and the Windows 8 
Authentication Broker SDK. According to our sampling 
of popular apps in Windows App Store, 52% of them 
use these SDKs (see Appendix A).  

Authentication/authorization SDKs are becoming a crit-
ical foundation for apps. However, no previous study 
has rigorously examined the security these SDKs pro-
vide to real-world apps. Typically, SDK providers sim-
ply release SDK code, publish documentation and ex-

amples, and leave the rest to app developers. An im-
portant question remains: if developers use the SDKs in 
reasonable ways, will the resulting applications be se-
cure? We show in this paper that the answer today is 
“No”.  The majority of apps built using the SDKs we 
studied have serious security flaws. This is not due to 
direct vulnerabilities in the SDK, but rather because 
achieving desired security properties by using an SDK 
depends on many implicit assumptions that are not 
readily apparent to app developers. These assumptions 
are not documented anywhere in the SDK or its develo-
per documentation. In several cases, even the SDK pro-
viders are unaware of the assumptions (see Section 5.2).  

The goal of our work is to systematically identify the 
assumptions needed to use an SDK to produce secure 
applications. We emphasize that it is not meaningful to 
verify an SDK by itself. Instead, our goal is to explicate 
the assumptions upon which secure use of the SDK 
depends. We do this by devising precise definitions of 
desired security properties, constructing an explicit mo-
del of the SDK and the complex services with which it 
interacts, and systematically exploring the space of app-
lications that can be built using the SDK. Our approach 
involves a combination of manual effort and automated 
formal verification. Any counterexample found by the 
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verification tool indicates either (1) that our system 
models are not accurate, in which case we revisit the 
real systems to correct the model; or (2) that our models 
are correct, but additional assumptions need to be 
captured in the model and followed by application 
developers. The explication process is an iteration of 
the above steps so that we document, examine and re-
fine our understanding of the underlying systems for an 
SDK. At the end, we get a set of formally captured as-
sumptions and a semantic model that allow us to make 
meaningful assurances about the SDK: an application 
constructed using the SDK following the documented 
assumptions satisfies desired security properties. 

We argue that explication should be part of the engin-
eering process of developing an SDK. Identified SDK 
assumptions can either be removed by modifying the 
SDK, or be documented precisely. In addition, in some 
cases it is feasible to develop automatic tests that detect 
common ways applications violate the assumptions (we 
provide an example in Section 6.2).  

Results. The work presented in this paper reflects a 12 
person-month effort (six months of two lead authors) in 
systematically explicating the three target SDKs. The 
resulting models (https://github.com/sdk‐security) are 
publicly released so that the community can review and 
enhance them. As a result of the explication process, we 
uncovered many SDK assumptions (summarized in 
Section 5). Some assumptions were especially serious 
because they can be violated when an app developer 
has a reasonable alternative interpretation of the develo-
per’s guide (dev guide) or when an app runs on certain 
realistic platforms. These reports were treated very ser-
iously by the SDK providers: five cases that we re-
ported to Facebook have been fixed (three of which 
were rewarded by Facebook bounties [14]). An issue 
uncovered in the Live Connect SDK resulted in 
Microsoft improving its dev guide. Our report to the 
OAuth Working Group convinced the group to add a 
subsection to the OAuth 2.0 draft.  

With all the SDK assumptions specified, we were able 
to successfully verify all the models with the uncovered 
assumptions (Section 4). Uncovering these SDK as-
sumptions also enables effective app testing since a 
violation of an assumption often leads to a successful 
exploit. Our study shows that many released apps are 
indeed vulnerable due to violations of these assump-
tions. We tested three sets of apps, including client apps 
in Windows 8 App Store and service apps using Face-
book sign-on, and found that 78%, 86% and 67% of 
these apps suffer from vulnerabilities related to the 
implicit assumptions we uncovered (Section 6.2).  

2 Illustrative Example  

To motivate our work, we describe a simple example in 
the context of the Live Connect SDK. It illustrates what 
can go wrong when SDKs are provided without thor-
oughly specifying their underlying security assumptions.    

2.1 Intended Use 
 
Suppose we want to develop an app using Live ID as 
the Identity Provider (IdP). We start with the dev guide 
for Live Connect [25]. The hyperlinks in the start page 
lead us to a page of detailed instructions about “signing 
users in” [26] which provides code snippets in 
Javascript, C#, Objective-C and Java showing how to 
use Live Connect SDK to sign users into a client app. 
Ignoring the specifics in these different languages, all 
the code snippets essentially cover the authentication 
logic shown in Figure 1. 

In the figure, WL stands for “Windows Live”. A 
developer first needs to call WL.login. The call takes an 
argument value, "wl.basic", indicating that the app will 
need to read the user’s basic information after WL.login 
returns an access token in step (2). The access token is a 
concept in the OAuth protocol [22]. It is an opaque 
string dynamically created by the Live ID server for 
each call to WL.login. Once the app gets the access to-
ken, it calls the REST API me to get the user’s basic 
info using this HTTP request: 

https://apis.live.net/v5.0/me?access_token=ACCESS_TOKEN 

The Live ID service responds with the user’s basic in-
formation in message (4), such as her full name and 
user ID. This completes the process, authenticating the 
user with the provided information.  

2.2 Hazardous Use 
 
The developer guide as depicted in Figure 1 is valid for 
a client-only app, but it does not make it clear that the 
same logic must not be used with an app that also incor-
porates an online service. Without stating this explicitly, 
developers may be inclined to use the SDK insecurely 
as shown in Figure 2. The interactions with the Live ID 

Live ID
Service

Client

(1) WL.login(appID, "wl.basic")

(2) access_token

(3) me(access_token)

(4) user info

 

Figure 1. Authentication Logic for “Signing Users In”. 
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service are identical in the two figures. The only differ-
ence is that in the second scenario, the access token is 
sent to the service app (i.e., the server side of the app) 
in message (2+) and it is the service app that calls me to 
authenticate the user.  

This can lead to a serious vulnerability that allows any 
app on the device to sign into the service app as the user. 
The rogue app sends a request to the Live ID service for 
an access token to view public information for the 
victim, such as a profile record on Facebook. Live ID 
responds with an access token. The problem is this 
token, intended for authorizing access to the public 
resource, is mistakenly used by the service app to auth-
enticate its owner as the victim. This allows the rogue 
app to get into the victim’s account on the service app. 
This mistake is fairly common in real-world apps. Al-
though we first observed it analyzing the Live Connect 
SDK, we later found that many apps using the Face-
book SDK have the same issue. As described in Section 
6.2, we tested 27 apps in the Windows 8 App Store and 
found that 21 of them are vulnerable due to this mistake.  

2.3 Resolution 
 
From one perspective, this is simply a matter of develo-
pers writing buggy apps, and the blame for the security 
vulnerability rests with the app developers. We argue, 
though, that the purpose of the SDK is to enable typical 
developers to produce apps that use authentication and 
authorization in a way that provides desired security 
properties, and the prevalence of buggy apps created 
using this SDK indicates a failure of the larger engin-
eering process. The developer exercised reasonable pru-
dence by using the access token to query the ID service 
for user information and followed exactly the process 
described in the SDK’s documentation (depicted in 
Figure 1).  The problem is lack of a deeper understand-
ing of the relationship between authentication and 
authorization, and the role of the access token (i.e., why 
is it safe to use the access token as shown in Figure 1 
but not as used in Figure 2). Correct use depends on 
subtle understanding of what kind of evidence each 
message represents and whether or not the whole mes-
sage sequence establishes an effective proof for a 
security decision. It is unrealistic to expect most 

developers to understand these subtleties, especially 
without clear guidance from the SDK. 

We contacted the developers of some of the vulnerable 
apps. A few apps have been fixed in response to our re-
ports. We also notified the OAuth Working Group (WG) 
in June 2012 about these vulnerable apps.1  Dick Hardt, 
editor of OAuth 2.0 specification (RFC 6749) [22], 
emailed us requesting language to be included in the 
specification dealing with this issue. We proposed the 
initial text and discussed with WG members. This 
resulted in Section 10.16 “Misuse of Access Token to 
Impersonate Resource Owner in Implicit Flow” being 
added to the OAuth specification. 

The key point this example illustrates is that security of 
apps constructed with an SDK depends on an under-
standing of the external services the app depends on, as 
well as subtleties in the use of tokens and assumptions 
about evidence used in authentication and authorization 
decisions. We believe the prevalence of vulnerable apps 
constructed using current SDKs is compelling evidence 
that a better engineering process is needed, rather than 
just passing the blame to overburdened developers.  In 
particular, we advocate for a process that explicates 
SDKs by systematically identifying the underlying as-
sumptions upon which secure usage depends. 

3 Explicating SDKs 

In order to explicate the SDKs, we need to clearly de-
fine the desired security properties. This section intro-
duces our target scenario and threat model, and then de-
fines the desired security properties and overviews our 
process for uncovering implicit SDK assumptions. 

3.1 Scenario  
 
A typical question about security is whether some pro-
perty holds for a system, even in the presence of an ad-
versary interacting with the system in an unconstrained 
manner. We can view this as a software testing problem: 
the system is a concrete program, while the adversary is 
an abstract one (i.e., a test harness in the terminology of 
software testing) that explores all interaction sequences 
with the concrete system. In our scenario, however, the 
target system is not concrete. We wish to reason about 
all applications that can be built with the SDK follow-

                                                           
1 Subsequently, we learned that John Bradley, a WG member, 
had posted a blog post in January 2012 about a similar issue 
[10]. The post considers the problem a vulnerability of the 
protocol, while we view it as a consequence of an unclear 
assumption about SDK usage because there are correct ways 
to use OAuth for client+service authentication. 

Live ID
Service

Client(1) WL.login(appID, "wl.basic")

(2) access_token

(3) me(access_token)

(4) user info
App 
Server

(2+) access_token

 
Figure 2. Hazardous Use. 
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ing documented guidelines. Hence, we need to consider 
both the client app and service as abstract modules. 

Figure 3 illustrates the modules in our setup. There are 
three main components: a client device, the application 
server foo.com, and the identity provider (IdP). The 
bottom layer of the client device is the client runtime, 
such as the HTML engine or the HTTP layer. The mid-
dle layer is the client SDK. The client app, FooAppC, is 
created by the developer to interact with the application 
server. We assume FooAppC always uses the client 
SDK for authentication and authorization. Like the cli-
ent, the application server has three layers: the service 
runtime represents the server platform, such as PHP or 
ASP.NET; the server side of the SDK we study; and the 
application server code.  We assume that FooAppS does 
not directly interact with the service runtime, but only 
uses it via the service SDK. Note that both FooAppC 
and FooAppS identify themselves to IdP as “FooApp” 
with an app ID pre-assigned by IdP. The IdP cannot tell 
if the caller is a client or the application server. 

The modules with brick pattern backgrounds are con-
crete modules with concrete implementations. They can 
be divided into two layers. The SDK layer consists of 
the Client SDK and the Service SDK. The underlying 
system layer consists of the client runtime, the service 
runtime, and the IdP. These are complex modules that 
one typically does not understand in detail in the begin-
ning of the study. Developing a semantic model for 
these components involves substantial systems investi-
gation effort (as described in Section 4.3) because the 
seemingly clear SDK logic actually depends on a much 
more mysterious (and often incompletely documented) 
underlying layer. We consider the formal semantic 
models resulting from this study as one of the main 
contributions of this work. 

The client and server application modules are abstract 
modules. They do not have concrete implementations: 
our goal is to reason about all possible apps built using 
the SDK. Nevertheless, the app modules do have con-
straints on their behaviors: FooAppC and FooAppS are 
only allowed to use the target SDKs for authentication 

and authorization, and must not violate rules document-
ed in the SDK developer guides. 

3.2 Threat Model 
 
We want to reason about security properties of all apps 
that could reasonably be constructed with the SDK. We 
assume a malicious application, MalAppC, may be in-
stalled on the user’s device.  MalAppC’s behavior is not 
constrained by the client SDK, but it is limited to 
functionality provided by the client runtime (e.g., it 
cannot access cookies of other domains or handcraft 
HTTP requests). The attacker also controls an uncon-
strained external machine, which we call “Mallory”. As 
shown in Figure 4, we can think of Mallory as a 
combination of a client and server that can freely com-
municate with the client, application server, and IdP. 
We model MalAppC and Mallory as abstract modules.  

3.3 Security Properties 
 
Our analysis depends on a formal definition of the se-
curity properties the SDK is intended to provide.   

Granularity: session. Informally, people often say 
things like “a client is authenticated as Alice”, or “a ser-
ver is authorized on Alice’s behalf”. However, it is im-
portant to point out explicitly that it is not the client or 
the server, but the session between them, that is authen-
ticated or authorized. More specifically, the end result 
of an authentication/authorization protocol between a 
client and a server is to know whom the session repre-
sents and what the session is allowed to do. It should 
not affect the identity or permission of any other ses-
sion. Therefore, we always keep the session (identified 
by its session ID) explicit in our modeling.  

Basis of security: secrets and signed data. All mech-
anisms we study share a commonality: they use secrets 
or data signed by the identity provider as unforgeable 
evidence to differentiate some entities from others. 
These secrets and signed data are either preconfigured 
or generated at runtime at the underlying system layer.  

FooAppC

Client SDK

Client runtime 

Identity Provider (IdP)

FooAppS

Service SDK

Service runtime

Client Device Server (foo.com)

Figure 3. Modules in Client+Service App. 
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Service runtime
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Figure 4. Threat Model.  



 
 

5

We distinguish five types of secrets in the studied 
SDKs: access tokens, Codes2, refresh tokens, app se-
crets and session IDs. The first four are protocol data in 
OAuth, which we will explain in later examples. The 
only identity-provider-signed data we have seen are 
signed requests, defined by Facebook, and authentica-
tion tokens, defined by Live ID. They are signed data 
structures containing some or all of the following data: 
access token, Code, app ID and user ID.  

The desired security properties, therefore, need to con-
sider what data the adversary may have obtained. This 
is made explicit by adding a knowledge pool to the mo-
del. All secrets and signed data received by the attacker 
are recorded in the knowledge pool, and can be used by 
the attacker in all subsequent actions. 

Desired security properties. We define the security 
goal of the authentication/authorization SDKs based on 
the protections they provide to apps. Apps written using 
the SDK following explicit programming guidelines 
should be protected from the following violations: 

(1) Authentication violation. If some knowledge, k, is 
about to be added to the pool, and k is sufficient to con-
vince the authentication logic of FooAppS that the 
knowledge holder is Alice, it implies that Mallory (and 
MalAppC, since they share the knowledge pool) can au-
thenticate as Alice, which is an authentication violation.  

(2) Authorization violation. Depending on the type of k, 
there are two kinds of authorization violations. If k is 
Alice’s access token, Alice’s Code, or the session ID 
for the session between FooAppC and FooAppS, it im-
plies that Mallory has obtained the permission to do 
whatever the session can do. Another authorization vio-
lation is when k is the app secret of FooApp. This 
would allow Mallory to do whatever FooAppS can do 
on the identity provider. 

(3) Association violation. The ultimate goal of authenti-
cation/authorization is not only to know who the user is 
or what she can do, but to correctly bind three pieces of 
data: the user’s identity (i.e., the authentication result), 
the user’s permissions (i.e., the authorization result), 
and the session’s identity (usually known as session ID). 
This association is actually the end result of authentica-
tion/authorization and is what the application logic de-
pends on after the process is accomplished. Mistakes in 
the association (such as binding Mallory’s identity to 
Alice’s permission, or binding Alice’s identity to Mal-
lory’s session) are security violations. 

                                                           
2 To avoid confusion with other meanings of “code”, such as 
“source code”, we always capitalize the first letter to refer to 
the “OAuth Code” in this paper.  

3.4 The Process of Explicating SDKs 
 
Figure 5 rearranges the modules (from Figure 4) and 
combines the concrete modules one each layer into one. 
The dashed line between abstract and concrete modules 
represents the interface between the test harness and the 
target system. The essential question is: what assump-
tions are necessary for FooApp to achieve the desired 
security properties? 

Explicating SDKs is a systematic investigation effort to 
explicitly document our knowledge about these mod-
ules and examine the knowledge against defined securi-
ty goals.  As shown in Figure 6, it is an iterative pro-
cess, in which we repeatedly refine our model and for-
mally check if it is sufficient to establish the security 
properties or additional assumptions are needed. A 
failed check (i.e., a counterexample in the model) indi-
cates either that our understanding of the actual systems 
needs to be revisited or that additional assumptions are 
needed to ensure the desired security properties.  

The outcome of the process is the assumptions we ex-
plicitly added to the model. In Section 5.2, we show 
that many of the uncovered assumptions can indeed be 
violated in realistic situations.  

4 Semantic Modeling 

This section gives an overview of the semantic model-
ing effort for the three SDKs. The resulting models are 
available at https://github.com/sdk‐security/. They reflect 
six months of effort by our two lead authors (i.e., 12 
person-months) in creating and refining the system 
models.  

FooAppS

SDK Layer 

Underlying System Layer

T
a
rg
e
t 

S
yste

m

FooAppC MalAppC Mallory

Knowledge 
Pool

T
e
st 

H
a
rn
e
ss

Figure 5. Modules Rearranged for Explicating. 

Obtain new insights about 
components and incorporate 

them into the model

Specify desired 
security properties

Check model

Refinemodel or add assumptions

Documented 
assumptions

pass

fail
output

Figure 6. Engineering Process for Explicating SDKs. 
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4.1 Modeling language 
 
To specify the semantics of the modules, we want a lan-
guage that has a suitable formal analysis technology for 
verification. In the first period of our investigation, we 
used Corral [24], a property checking tool that can per-
form bounded verification on a C program with embed-
ded assertions. Corral explores all possible execution 
paths within a bound to check if the assertions can be 
violated. Later, we re-implemented all the models in 
Boogie [9], a language for describing proof obligations 
that can then be tested using an SMT solver, which 
allowed us to fully prove the desired properties. This 
provides a higher assurance than the bounded verifica-
tion done by Corral, but the basic ideas and approach 
are the same for both checking strategies. For con-
creteness, this section describes the Boogie version to 
explain our modeling. 

The key Boogie language features needed to understand 
this paper are: 

 The * symbol represents a non-deterministic Boolean 
value.  

 HAVOC  v is a statement that assigns a non-deter-
ministic value to variable v. 

 ASSERT(p) specifies an assertion that whenever the 
program gets to this line, p holds.  

 ASSUME(p) instructs Boogie to assume that p holds 
whenever the program gets to this line.  

 INVARIANT(p)  specifies a loop invariant. Boogie 
checks if p is satisfied at the entry of the loop, and 
inductively prove p’s validity after each iteration.  

If Boogie fails to prove an assertion or an invariant, it 
reports a counter-example. This leads us to refine the 
model, adding assumptions when necessary.  

4.2 Modeling abstract modules 
 
The test harness interacts with the concrete modules in 
a non-deterministic manner.  It implements the abstract 
modules representing both the unknown (benign) appli-
cation and the attacker’s resources. The test harness 
consists of a loop with the loop count depth. Each itera-
tion calls the function TestHarnessMakesCall. This func-
tion is implemented as a non-deterministic switch (i.e., 
a statement of “switch(*){…}”) that chooses to call 
FooAppcRuns, MalAppcMakesCall, or MalloryMakesCall. 
Eventually, through a series of non-deterministic 
choices as shown in Figure 7, one of the functions in a 
concrete module will be called.  

Using the knowledge pool. As mentioned in Section 
3.3, we use a knowledge pool to model the information 

obtained by an attacker.  Different types of knowledge, 
such as access tokens, Codes, and session IDs, are ex-
plicitly differentiated. We do not consider attacks that 
involve providing arguments of the incorrect type, e.g., 
giving a session ID to a function expecting an access to-
ken. There is an AddKnowledge function for each know-
ledge type. After each call to MalAppCMakesCall and 
MalloryMakesCall, the function AddKnowledge_Type is 
called to add any acquired knowledge to the pool. There 
is a corresponding DrawKnowledge_Type function for 
non-deterministically drawing knowledge of a particu-
lar type from the knowledge pool. It is implemented us-
ing HAVOC  i, where i is the array index of the piece of 
knowledge non-deterministically chosen. 

4.3 Modeling concrete modules 

Concrete modules do not have any non-determinism. 
The key aspects of building semantic models for the 
concrete modules are summarized below. 

Data types. The basic data types in the models are int 
and several types  for  enumerables. We also define 
structs and arrays over the basic types. In the actual sys-
tems, the authentication logic is constructed using string 
operations such as concatenation, tokenization, equality 
comparison, and name/value pair parsing. We found 
that most string values are essentially enumerable, ex-
cept those of domain names and user names, which we 
canonicalize as Alice, Mallory, foo.com, mallory.com, 
etc. Thus, the basic types, structs, and arrays are 
sufficient to model data used in the concrete modules.  

SDKs. The sizes of these SDKs are moderate (all under 
2000 lines) and their source code is public. The SDKs 
we modeled were implemented in HTML, JavaScript 
and PHP, so we needed to first translate the SDKs func-
tion-by-function into Boogie. We do this translation 
manually, but it is not hard to imagine tools that could 
mostly automate it. Table 1 shows two functions in the 
Facebook PHP SDK and our corresponding Boogie 
procedures. For getUserFromAvailableData, the changes 
are essentially line-by-line translations. For getLogout‐
Url, the PHP code performs a string operation and re-

TestHarnessMakesCall

FooAppcRuns MalAppcMakesCall MalloryMakesCall

depth++

CallClient
SDK

CallFoo
AppSAPI

MalAppc
CallsIdP

MalAppcCalls
ClientRuntime

MalloryCalls
IdP

Concrete modules

depth=0

Figure 7. Test Harness.  
(Dotted lines represent non-deterministic choices.) 



 
 

7

turns a string. Our Boogie translation in this case is not 
obviously line-by-line. For example, our procedure re-
turns a four-element vector instead of a string. The PHP 
function calls getUrl and array_merge, which concaten-
ate substrings, therefore, are implicitly modeled by the 
four-element return vector.  

Underlying system layer. Unlike the SDK, which is 
simple enough to model completely, the identity provi-
der, client runtime, and server runtime are very com-
plex and may not even have source code available.  
Completely modeling every detail of these systems is 
infeasible, but our analysis depends on developing suit-
able models of them. By studying the target SDKs, we 
identified three aspects of these systems that need to be 
carefully understood to perform verification. These as-
pects are the basis for the security goals the SDKs are 
designed to achieve:  

(1) The identity provider’s behaviors according to diff-
erent input arguments and various app settings in its 
web portal. Each identity provider has a web page for 
app developers to enter a number of app settings that 
the identity provider needs to know, such as app ID, 
app secret, service website domain, and return URL. 
Many of these settings are critical for the identity 
provider’s decision-making. Further, different inputs to 
the provided APIs cause different responses. Because 
we do not have the source code for the identity provi-
ders, we tested these behaviors by constructing different 
requests and app settings. For example, in the models 
we’ve built, the identity provider APIs dialog_ 

permissions_request(), RST2_srf() and oauth20_ 

authorize_srf() 3  involved 11, 8 and 6 if-statements 
respectively, to describe different behaviors we observ-
ed in testing. 

 (2) Data passing on the client runtime. As with the 
identity providers, we do not have access to source code 
to understand detailed behaviors of the client runtime. 
Our models were based on observations made during 
testing. We focused on the client’s decision-making 
about passing data from one server to another (by redir-
ection), delivering data to FooAppC or MalAppC, and 
attaching cookies to outgoing requests. These decisions 
are important for security. We maintain a cookie struc-
ture for each client app, i.e., FooAppC or MalAppC. The 
cookie structure contains a session ID field and some 
optional fields specific to the SDK, such as 
signed_request and authentication_token.  

(3) Sessions, requests, and cookies on the service run-
time. In our model, the service runtime is a layer that 
defines data structures for sessions, requests and cook-
ies for the service SDK and FooAppS. (Note that al-
though cookies are in the headers of requests, we separ-
ate them to flatten the data structure.) The cookie struc-
ture is the same as previously described. The request 
structure is defined according to the SDK’s specifica-

                                                           
3  The APIs are accessed as https://www.facebook.com/ 
dialog/permissions.request, https://login.live.com/RST2.srf, 
and https://login.live.com/oauth20_authorize.srf 

protected function getUserFromAvailableData() { 
  if ($signed_request) { 

... 
    $this‐>setPersistentData('user_id',  
                                                 $signed_request['user_id']); 
    return 0; 
  } 
  $user = $this‐>getPersistentData('user_id', $default = 0); 
  $persist_token =  

    $this‐>getPersistentData('access_token'); 
  $access_token = $this‐>getAccessToken(); 
  if ($access_token && 
       !($user && $persist_token == $access_token)) {  
             $user = $this‐>getUserFromAccessToken(); 
             if ($user)  
                $this‐>setPersistentData('user_id', $user); 
             else $this‐>clearAllPersistentData();  
    } 
    return $user;   
} 
 
public function getLogoutUrl() { 
    return $this‐>getUrl( 
         'www',  'logout.php', 
         array_merge(array( 
              'next' => $this‐>getCurrentUrl(), 
              'access_token' => $this‐>getAccessToken(), ), …)); 
  } 

procedure  {:inline 1} getUserFromAvailableData()  returns (user:User) {
   if (IdP_Signed_Request_Records__user_ID[signed_request] != _nobody) { 
             … 
            user := IdP_Signed_Request_Records__user_ID[signed_request]; 
            call setPersistentData__user_id(user); 
            return; 
   } 
   call user := getPersistentData__user_id(); 
   call persisted_access_token := getPersistentData__access_token(); 
   call access_token := getAccessToken(); 
   if (access_token >= 0 &&  
        !(user != _nobody && persisted_access_token == access_token)) { 
               call user := getUserFromAccessToken(access_token); 
                if (user != _nobody) {       
  call setPersistentData__user_id(user); 
                } else {  
                   call clearAllPersistentData(); 
               } 
   } 
   return; 
} 
procedure {:inline 1} getLogoutUrl()  
  returns (API_id: API_ID, next__domain: Web_Domain, next__API: API_ID,  
                 access_token: int)   { 
         API_id := API_id_FBConnectServer_login_php; 
         call access_token := getAccessToken(); 
         call  next__domain,  next__API := getCurrentUrl(); 
} 

Table 1. Example of a PHP function and its Boogie model. 
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tion. For example, requests for the Facebook PHP SDK 
use a structure containing a Code, a state and an option-
al signed_request. The session structure contains a ses-
sion ID and a collection of session variables (keys) de-
fined by the SDK.   

4.4 Security assertions 
 
We use ASSERT statements to document and test the de-
sired security properties, covering each of the security 
violations described in Section 3.3.  

Authentication violation. An authentication violation 
occurs when an attacker acquires some knowledge that 
could be used to convince FooAppS that the knowledge 
holder is Alice. A simple example is the case we 
described in Section 2.2, in which the knowledge is an 
access token. In addition to access tokens, we also 
consider IdP-signed data such as Facebook’s signed 
messages or Live ID’s authentication tokens. To detect 
these violations, when a Facebook Signed Request k is 
added to the knowledge pool, we assert that  

k.user_ID  !=  _alice &&  k.app_ID  !=  _foo_app_ID &&  
TokenRecordsOnIdP[k.token].user_ID != _alice 

where TokenRecordsOnIdP represents IdP’s  database 
storing the records of access tokens.4 

Authorization violation. To detect authorization viola-
tions, we add ASSERT statements inside each AddKnow‐
ledge_Type function. For example, the assertion in 
function AddKnowledge_Code is: 

ASSERT(!(c.user_ID == _alice && c.app_ID == _foo_app_ID)) 

This checks that the Code added to the knowledge pool 
is not associated with Alice on FooApp. Similar asser-
tions are added to the AddKnowledge functions for re-
fresh tokens and session IDs. The app secret is different 
from the above knowledge types, because it is tied to 
the app not the user. When k is an app secret, we assert 
that k != _foo_app_secret. 

Association violation. At the return point of every web 
API on FooAppS, we need to ensure the correct associ-
ation of the user ID, the permission (represented by an 
access token or Code), and the session ID. For example, 
for Facebook PHP SDK, the assertion is the following. 
It This ensures that the three session variables of the 
session identified by cookie.sessionID all involve the 
same user. Concrete cases are given in Section 5.2. 

                                                           
4 To improve presentation readability, the syntax of the above 
predicate is slightly changed from the syntax allowed by 
Boogie; see https://github.com/sdk‐security/  for the exact syntax. 

Sessions[cookie.sessionID].user_ID ==      
           CodeRecordsOnIdP[ Sessions[ 
                           cookie.sessionID].code].user_ID  
 && Sessions[cookie.sessionID].user_ID ==  
            TokenRecordsOnIdP[Sessions[ 
                           cookie.sessionID].token].user_ID 

5 Results 

We applied our approach to explicate the Facebook 
PHP SDK, Live Connect SDK and Windows 8 Authen-
tication Broker. The Facebook PHP SDK is the only 
server-side SDK provided on Facebook’s developers’ 
website and is currently among the most widely used 
authentication/authorization SDKs. Facebook also has 
SDKs for Android and iOS apps, which have many 
concepts similar to the PHP SDK, but we have not stud-
ied them in detail. The Live Connect SDK is provided 
by Microsoft for developing metro apps that use Live 
ID as the identity provider. The Windows 8 Authentica-
tion Broker is for metro apps to use an OAuth-based 
(not only Live ID) identity provider, such as Facebook 
or Twitter.   

5.1 Assumptions Explicated 
 
The models resulting from our study formally capture 
what we learned about the SDKs and the systems. Our 
assumptions are specified in two ways: (1) all the 
ASSUME statements that we added; (2) when we need to 
assume particular program behaviors, such as a function 
call must always precede another, we model the beha-
viors accordingly, and add comment lines to state that 
the modeled behaviors are assumptions, rather than 
concrete facts.  All the assumptions are added in order 
to satisfy the assertions that described in Section 4.4. 
The assertions are fairly uniform — they are all about 
sensitive data added to the knowledge pool and binding 
errors in associating sessions, users and permissions.  

Verification. After all the assumptions were added, the 
models were automatically verified by Corral with the 
bound 5 set to 5, meaning that in the test harness (Figure 
7), the counter of the main loop (variable depth) does 
not exceed 5. Such a depth gives a reasonable confi-
dence that the security properties are achieved by the 
models and the added assumptions: the properties could 
only be violated by attacks consisting of six or more 
steps. Running on a Windows server with two 2.67GHz 
processors and 32GB RAM, it took 11.0 hours to check 
the Facebook PHP SDK, 26.3 hours to check Live Con-
nect SDK and 15.1 hours to check the Windows 8 Au-
thentication Broker.  
                                                           
5 Corral is a fully automatic tool for exploring code paths 
symbolically. The full automation, however, comes with the 
limitation that it only performs a bounded search. 
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The verification being bounded is a limitation of the 
models built for Corral, so we subsequently re-imple-
mented all three models in Boogie language [9]. 
Verification of Boogie models is not automatic. It re-
quires human effort to specify preconditions and post-
conditions for procedures, as well as loop invariants 
(i.e., the invariant clauses). The Boogie verifier checks 
that (1) every precondition is satisfied by the caller; (2) 
if all preconditions of the procedure are satisfied, then 
all the postconditions will be satisfied when the proce-
dure returns; (3) every loop invariant holds initially, 
and if it holds before an iteration then it will still hold 
after the iteration. By induction, the verified properties 
hold for an infinite number of iterations. Rewriting the 
three models in Boogie took 14 person-days of effort, 
including a significant portion on specifying 
appropriate loop invariants. The Boogie modeling did 
not find any serious case missed in the Corral modeling, 
but provides a higher level of confidence. 

Examining the assumptions in the real world. We 
manually examined each assumption added to assess 
whether it could be violated in realistic exploits. This 
effort requires thinking about how apps may be 
deployed and executed in real-world situations. Table 2 
summarizes the assumptions uncovered by our study 
that appear to be most critical. These assumptions can 
be violated in the real world, and the violations result in 
security compromises. Based on our experience in 
communicating with SDK providers, finding realistic 

violating conditions is a crucial step to convincing them 
to treat the cases with high priority. This step requires 
extensive knowledge about systems, and does not 
appear to be easily automated. We describe these 
assumptions in more detail in Section 5.2. Table 3 lists 
some assumptions uncovered that, if violated, would 
also lead to security compromises. But, unlike the as-
sumptions in Table 2, we have not found compelling 
realistic exploits that violate these assumptions. A few 
additional assumptions, listed in Appendix B, are 
needed to complete the verification. They correspond to 
some simplifications we made to the models. It is un-
clear if their violations lead to security compromises, 
but we make it explicit that we have not considered the 
situations violating these assumptions. 

5.2 Confirmed Exploitable Assumptions 
 
This subsection explains each of the critical assump-
tions in Table 2. These results show concretely how the 
SDK’s security assurance depends on actual system 
behaviors and app implementations, illustrating the im-
portance of explicating the underlying assumptions up-
on which secure use of the SDK relies.   

5.2.1 Facebook SDK  
 
Assumptions A1, A2, A3, and A6 concern the Face-
book PHP SDK. 

Namea 
(SDK) 

Assumptionb consequence of violation exploit opportunity 
vendor 

response 

A1 
(FB) 

In  FooAppCMakesACall, we 
assume FooAppC.cookie.sessionID 
== _aliceSession. 

The ASSERT in Table 1 will 
be false. Mallory’s session 
is associated with Alice’s 
user ID. 

When the SDK is used in 
subdomaining situations, e.g., 
cloud domains 

Counter-
measure on 
service 
platform 

A2 
(FB) 

 

For any PHP page, if getUser is 
called, then getAccessToken must 
be called subsequently.  

Alice’s user ID will be 
associated with Mallory’s 
access token. 

When FooAppS contains a PHP 
page that directly returns the 
user ID 

SDK code fix 

A3 
(FB) 

Before getLogoutUrl returns to 
client, we assume 
logoutURL.params.access_token 

!= getApplicationAccessToken(). 

App access token is added 
to the knowledge pool 
(owned by the adversary). 

When a PHP page does not 
have the second code snippet 
shown in the dev guide 

SDK code fix 

A4 
(LC) 

In  saveRefreshToken on FooAppS, 

we assume  
user_id != refresh_token.user_id. 

Alice’s refresh token will 
be associated with 
Mallory’s session on 
FooAppS. 

When the term “user id on the 
site” in the dev guide is inter-
preted as the user’s Live ID 

Dev guide 
revision 

A5 
(WA) 

 

In 
callAuthenticateAsyncFromMalApp, 
we assume (app_id == _MalAppID 
|| user == _Mallory). 

Alice’s access token or 
Code for FooApp is 
obtained by MalAppC. 

When a client allows automatic 
login or one-click login 

See Section 
5.2.3 

A6 
(FB) 

 

We assume FooAppC always logs 
in as Alice, i.e., the first argument 
of  dialog_oauth is “_Alice”. 

Alice’s session will be 
associated with Mallory’s 
user ID and access token. 

When request forgery 
protection for app logon is 
missing or ineffective 

Notifying 
developers 

 

Table 2. Critical assumptions uncovered in our study.  
a FB stands for Facebook PHP SDK, LC for Live Connect and WA for Windows Auth Broker 

b Boogie syntax does not allow the dot operator to refer to a child element. For simplicity of presentation, we use it in this column.  
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Assumption A1. This assumption states that the cookie 
associated with Alice’s client must match Alice’s ses-
sion ID. Figure 8 is a screenshot of the usage instruc-
tions given in the readme file in the Facebook PHP 
SDK [17]. It seems straightforward to understand: the 
first code snippet calls getUser to get the logged-in 
user’s ID  (it returns null if the user is not logged in). 
The second snippet demonstrates how to make an API 
call, such as me. The third snippet toggles between 
login and logout, so that a logged-in user will get a 
logoutURL and a logged-out user will get a loginURL in 
the response. 

The SDK’s implementation for the getUser method is 
very simple. It calls the getUserFromAvailableData 

function shown in Table 1. There are two statements 
(italicized in Table 1) calling setPersistantData, which 
is to set a PHP session variable denoted as 
_SESSION['user_id']. Setting _SESSION['user_id'] is a 
binding operation because it associates the user’s iden-
tity with the session, which may affect the predicate 
that we define against association violations — speci-
fically, if Alice’s user ID is assigned to the 
_SESSION['user_id'] of Mallory’s session, it would allow 
Mallory to act on FooAppS as Alice. Because the ses-
sion ID is a cookie in the HTTP request, the assertion 
must depend on how a client runtime handles cookies.   

Violating the assumption using subdomaining. 
Normally, because of the same-origin-policy of the 
client, cookies attached to one domain are not attached 
to another. However, the policy becomes interesting 
when we consider a cloud-hosting scenario. In fact, 
Facebook’s developer portal makes it very easy to 
deploy the application server on Heroku, a cloud plat-
form-as-a-service. Each service app runs in a 
subdomain under herokuapp.com (e.g., FooAppS’s sub-
domain runs as foo.herokuapp.com). Of course, Mallory 
can similarly run a service as mallory.herokuapp.com. 

The standard cookie policy for subdomains allows code 
on mallory.herokuapp.com to set a cookie for the parent 
domain herokuapp.com. When the client makes a request 
to foo.herokuapp.com, the cookie will also be attached to 
the request. Therefore, if Alice’s client visits the site 
mallory.herokuapp.com, Mallory will be able to make the 
client’s cookie hold Mallory’s session ID. Thus, 
FooAppS binds Alice’s user ID to Mallory’s session.  

In response to our report, Facebook developed a coun-
termeasure, which has been applied on the Heroku plat-
form. It generates a new session ID (unknown to 
Mallory) when a client is authenticated. Facebook 
offered us a bounty three times the normal Bug Bounty 
amount for reporting this issue, as well as the same 

Figure 8. Facebook PHP SDK usage instructions. 
(Screenshot from https://github.com/facebook/facebook-php-

sdk/blob/master/readme.md) 

name assumption consequence of violation proposed fix 

B1 
(FB) 

Result of getAccessToken returned to client is 
not equal to getApplicationAccessToken() 

App access token is added to the 
knowledge pool. 

Develop checker to examine the 
traffic from FooAppS  

B2 
(FB) 

In dialog_oauth, we assume 
FooApp.site_domain != Mallory_domain   

Alice’s access token or Code for 
FooApp is obtained by Mallory. 

Develop checker to examine if 
the “Site Domain” app setting is 
properly set 

B3 
(FB) 

Before FooAppC sends a (non-NULL) request, 
we assume 
request.signed_request.userId == _Alice 

Alice’s session will be associated 
with Mallory’s user ID and access 
token. 

Enhance dev guide to require a 
runtime check on  FooAppC 

B4 
(LC) 

In HandleTokenResponse, we assume  
auth_token.app_ID == _foo_app_ID 

Alice’s authentication token for 
MalApp will be used by Mallory 
to log into FooAppS as Alice 

Develop checker to examine if 
the signature in the auth_token 
is verified. 

B5 
(LC) 

In constructRPCookiefromMallory, we 
assume (RP_Cookie.access_token.user_ID == 
RP_Cookie.authentication_token.user_ID)

Alice’s ID associate with 
Mallory’s access token, or vice 
versa 

Enhance dev guide to require a 
runtime check on FooAppS 

Table 3. Assumptions uncovered that would lead to security vulnerabilities if violated but no realistic exploits known.  
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award each for Assumptions A2 and A3 discussed 
next.6 

Assumption A2. This assumption is a case in which 
Corral actually discovered a valid path for violating an 
assertion completely unexpected to us. The path indi-
cated that if a PHP page on FooAppS only calls getUser 
(e.g., only has the first code snippet from Figure 8), 
Mallory is able to bind her user ID to Alice’s session. 
The consequence is especially damaging if the session’s 
access token is still Alice’s. Corral precisely suggested 
the possibility (see Table 1): if there is a signed_request 
containing Mallory’s user ID, then the first setPersis‐
tentData call will be made, followed by a return. The 
method sets _SESSION['user_id'] to Mallory’s ID without 
calling getAccessToken, which would otherwise keep 
the access token consistent with the user ID. Therefore, 
the association between the user ID and the access to-
ken is incorrect. The session will operate as Mallory’s 
account using Alice’s access token.  After investigating 
our report about this, Facebook decided to add checking 
code before processing the signed request to the SDK to 
avoid the need for this assumption. 

Assumption A3. This assumption requires that any 
PHP page that includes the third snippet in Figure 8 
must also include the second snippet. In the example 
code in the figure, it is not obvious why the second 
snippet is required before the third snippet. However, 
when we modeled getAccessToken, as shown in Table 4, 
we realized that in Facebook’s authentication mechan-
ism there are two subcategories of access token: user 
access token, which is basically what people usually 
refer to as “access token”, and application access token, 
which is described in Facebook’s dev guide [18]. The 
application access token is provided to a web service 
for a number of special purposes, such as “publishing 
instances of ‘secure Open Graph actions’”. In fact, the 
app secret can be derived solely from the application 
access token, so it is a serious authorization violation if 
Mallory or MalAppC can obtain it.  

Method getLogoutUrl in snippet 3 constructs a URL to 
send back to the client. The URL contains the result of 
getAccessToken. To obtain the application access token, 
Mallory only needs to send a request that hits a failure 
condition of getUserAccessToken, which prevents 
$this‐>accessToken from being overwritten in the bold 
line in Table 4. We confirmed that this can be done by 
using an invalid Code in the request.  
 

                                                           
6 We donated all three bounties to charities. The donations 
were one-to-one matched by Facebook. 

Interestingly, getAccessToken is also called by getUser 
in snippet 1 in Figure 8. If a PHP page includes 
snippet 2, the access token will be used to call a REST 
API. When it is an application access token, the API 
will raise an exception, which foils the exploit. That is 
why snippet 2 is required before snippet 3. 

In response to our report on this issue, Facebook 
modified the SDK so that getLogoutUrl now calls get‐
UserAccessToken instead of getAccessToken, thus avoid-
ing the need for developers to satisfy this assumption. 

Assumption A6. This assumption requires that the user 
on FooAppC should not be Mallory. Otherwise, Mallory 
would be able to associate its access token and user id 
with Alice’s session. In Section 6.2, we show that many 
apps (14 out of 21 tested) indeed violate this assump-
tion. Moreover, this association violation can be parti-
cularly damaging when the service app has its own 
credential system, and supports linking a Facebook ID 
to Alice’s password-protected account. Once the link-
ing can be done in the session, Mallory will be able to 
sign into Alice’s account using Mallory’s Facebook ID. 
We confirmed that among the 14 service apps which 
violate the assumption, 6 of them support linking, and 
thus allow Mallory to login as Alice. We reported this 
issue to Facebook, who undertook the effort of 
notifying app and website developers. 

5.2.2 Live Connect     
 
Assumption A4 concerns how the Live Connect SDK 
handles “single sign-on for apps and websites” [27]. 
The sample /LiveSDK/Samples/PHP/OAuthSample [28] 
demonstrates how to implement a PHP service app that 
allows single sign-on. This sample code is essentially 
the dev guide given as a program skeleton, with 
comment blocks for app developers to implement. The 
core of the problem lies in the following function, 
whose implementation is empty except for a comment: 

function saveRefreshToken($refreshToken) { 
     // save the refresh token associated with the 
     //     user id on the site. 
} 

This is precisely what we call a binding operation. The 
refresh token is the input parameter, but it is not clear 
where the user id comes from. Within the scope of this 

public function getAccessToken() {  
  … 

      $this‐>accessToken= $this‐>getApplicationAccessToken();
      $user_access_token = $this‐>getUserAccessToken(); 
       if ($user_access_token) { 
           $this‐>accessToken=$user_access_token; 

  } 
      return $this‐>accessToken; 
} 

Table 4. SDK source code of getAccessToken 



 
 

12

function, the only place to obtain a user ID is from a 
cookie called AUTHCOOKIE, which contains the user’s 
Live ID. However, the SDK’s logic is not sufficient to 
ensure that Alice’s refresh token is associated with her 
user ID. Appendix C of our technical report provides 
technical details [37]. 

We built a proof-of-concept exploit to send to Micro-
soft. The Live ID team responded that our attack is 
valid, but it “does not reflect the scenarios we are tar-
geting”. The target scenario is a website which has its 
own credential system, such as a university website, so 
“the user id on the site” means, for example, the student 
ID. We replied to the team that an unclear context like 
this was exactly what we believe needs to be uncovered 
and at least documented clearly (indeed, explicating 
such assumptions is one of our main goals). In this case, 
the context was almost completely hidden: the 
OAuthSample sample is the only sample provided in 
/LiveSDK/Samples/PHP/, so it is expected to target more 
generic scenarios. This is why if saveRefreshToken tar-
gets a specific scenario, the context must be made 
explicit. The team replied us that they would “add more 
comments to that code to make the sample code clear 
on this.” Recently we found that the comment has been 
revised to “save the refresh token and associate it with 
the user identified by your site credential system.” This 
change was also made in the ASP.NET version of the 
sample code. 

5.2.3 Windows Authentication Broker 
 

Assumption A5 concerns the Windows 8 Web Authen-
tication Broker, used by Windows 8 apps with OAuth-
based identity providers. For concreteness of presenta-
tion, we assume the Facebook Identity Provider. In the 
Auth Broker, the only function for authentication is 
authenticateAsync. Figure 9 illustrates the data passing 
through this function when the app requests an access 
token. The key observation is that the client does not 
conform to the same-origin policy, because the 302 
response is in the context of https://facebook.com, while 
on Windows 8, an app runs in its own domain, ms‐
appx://packageID. Without the same-origin-policy, we 
were unable to see why Alice’s access token for 
FooApp is guaranteed to be passed to FooAppC, not 

MalAppC. To test this, we implemented a proof-of-
concept MalAppC. It indeed got the access token, which 
allowed it to do everything FooAppC can do. 

We reported this finding to Microsoft and Facebook, 
and learned their differing perspectives about the re-
sponsibility and severity of this issue. Microsoft consid-
ered it “a shortcoming of the OAuth protocol and not 
specific to our implementation.” Facebook pointed out 
that when authenticateAsync is called, an embedded 
browser window (usually called a WebView) is always 
prompted for Facebook password. This lowered the se-
verity of the attack. We consider this a shaky security 
basis: if authenticateAsync someday allows a user to 
login automatically or with one click without using a 
password, the basis will become invalid.  

We investigated how SDKs on other platforms handle 
the data passing, and found a similar issue with the 
Facebook SDK for Android. However, on Android, 
there is a mechanism to skip the password prompt to get 
the access token automatically. In response to our re-
port, Facebook is developing a fix for its Android SDK. 

6 Automated Testing 

One additional value of explicating the SDKs is that it 
may be possible to provide tools that test apps for viola-
tions of critical assumptions. Such tests may not be able 
to guarantee the app always upholds the assumption, 
but rather focus on testing apps for common vulnerabil-
ity patterns identified as a result of the explicating pro-
cess. We developed a prototype to show the feasibility 
of building such a tester.   

6.1 Design 
 
Figure 10 shows our testing framework. For each vul-
nerability pattern to test, the test case defines the ac-
tions of the tester app, the proxy, and a set of server-
side tester APIs (e.g., PHP or ASP.NET files).  The 
tester app behaves as MalAppC. The proxy does the ne-
cessary traffic manipulations for requests and responses. 
It also behaves as the unconstrained machine Mallory. 
Tester APIs implement specific checks for session 
states, especially for the associations we focus on.  

We implemented test cases checking for violations of 
four assumptions: the vulnerability described in Sec-
tion 2 (about using an access token for authentication), 
and vulnerabilities corresponding to the violations of 
assumptions A1 (concerning the session ID across sub-
domains), A6 (about Mallory’s user ID associated with 
Alice’s session) and A4 (about binding the user ID with 
refresh token). Only the test for A4 requires a tester 
API on the app server.  

Facebook
IdP authenticateAsync

Client app

(requestUri, 
callbackUri)

access
token

Visit https://requestUri

HTTP 302: redir to
https://callbackUri 

#access_token=xxx&… 

Alice’s clientms‐appx://packageID

https://facebook.com

 

Figure 9. Data flow through authenticateAsync. 
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In the first test, the tester app performs the IdP’s sign-
on steps as Alice, requests an access token, then pre-
sents the token to the app server to see if the authenti-
cation succeeded. In the second test (regarding A1), if 
the app server’s hostname is foo.a.com, the proxy 
creates another hostname mallory.a.com. The test fol-
lows the steps described in Section 5.2.1. Eventually 
the proxy checks if the authentication is successful, but 
the associated session ID is identical to that of Mal-
lory’s session on foo.a.com. In the third test (for A6), the 
proxy observes the HTTP request that FooAppC sends 
to Facebook. It finds out which type of data is used as 
the proof for authentication (a.k.a., the authenticator), 
which can be either a Code or signed request. The 
proxy also tries to find a field named state, which is an 
argument supported by Facebook to prevent request 
forgery for login [16]. The proxy then replaces the 
authenticator and the state field (if it exists) with the 
ones that Mallory’s session owns. After sending the 
request, the proxy checks whether Mallory can associ-
ate her Facebook ID with Alice’s session, and reports a 
violation if it sees a successful server response.   

The fourth test (A4) requires the help of a tester API on 
the server because it tests whether the refresh token is 
associated with an appropriate user ID. The test uses the 
proxy to manipulate the AUTHCOOKIE in the request 
header so that it contains Mallory’s authentication to-
ken in Alice’s request. The proxy then mimics Mallory 
to call the tester API, which calls readRefreshToken and 
checks if it returns Alice’s refresh token.  

6.2 Results 
 
In general, the testing framework is designed for app 
developers so that they can avert the common pitfalls in 
their own implementations. Nevertheless, since some of 
the tests do not need tester APIs on the server, they can 
be used with access to the apps alone. This opens the 
possibility of a third party (such as the SDK provider) 
performing the tests on submitted apps.  

We tried using the tests to check Windows 8 and 
Facebook apps found in the wild. The sets of apps that 
we tested are named Set 1, Set 2 and Set 3, correspond-
ing to the first three aforementioned tests respectively. 
The test apps were obtained as objectively as possible. 

To construct set 1, we queried “Facebook” in the free 
apps in Windows 8 App Store, which returned about 
572 apps. We ranked the apps by user ratings and 
examined the apps with a rating of 3+ stars. Apps 
without a backend service were excluded. We then 
selected apps that authenticate users through identity 
providers. This left us with a total of 27 apps. 

Set 2 was constructed by doing a Google query for 
“herokuapp.com login”, which gave us many URLs on 
herokuapp.com. We visited each URL to see if the 
website ran a PHP server and appeared reasonably 
functional. This gave us a list of 20 websites. We then 
examined the traffic of each website to determine if it 
used the Facebook PHP SDK. Seven of the sites did, 
and these were used for Set 2.  

To construct Set 3, we used the Google search query 
“login.php” and visited the first 40 result pages 7  to 
examine which URLs correspond to PHP websites that 
support Facebook sign-on. We found 21 candidate 
websites that comprise Set 3.  

Table 5 shows the number and percentage of apps that 
matched the vulnerability pattern in each set. The 
results for Set 1 show that 78% of tested services with 
Facebook sign-on mechanism indeed use the access 
token for server-side authentication. The results for 
Set 2 reinforce the value of our SDK analysis — when 
we studied the SDK, we only hypothesized the possibil-
ity of this vulnerability. The vulnerability we conceived 
on a hypothetical service app (FooAppS) accurately re-
flects the reality of 86% of services tested in Set 2. The 
results for Set 3 indicate that 67% of the tested apps 
would allow Mallory’s Facebook ID to be associated 
with Alice’s session. This violation is mainly due to 
missing or insufficient request forgery protections for 
user login. This association mistake can be particularly 
dangerous when the service apps support certain 
functionalities. For example, we found that many ser-
vice apps have their own credential systems, and allow 
a user to link her Facebook ID to her password-
protected account. After the linking, the user can use a 
Facebook login to sign into the password-protected 
account. When assumption A6 is violated, Mallory is 
able to link her Facebook ID to Alice’s account in the 

                                                           
7 We needed to examine so many result pages because most 
webpages matched the query “login.php” for reasons not 
about our intent, e.g., popular pages containing both words 
“login” and “php” are often considered a match. 
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Figure 10. Testing Framework.   
(Grey boxes constructed for testing.) 

Test Set Number of Apps Vulnerable 
1 (Section 2) 27 21 (78%) 

2 (assumption A1) 7 6 (86%) 
3 (assumption A6) 21 14 (67%) 

Table 5. Test Results.  
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session, and thus able to sign into Alice’s account. We 
confirmed that 6 of the service apps could be exploited 
in this way.  

7 Related Work 

The idea of formally verifying properties of software 
systems goes back to Alan Turing [34], although it only 
recently became possible to automatically verify inter-
esting properties of complex, large scale systems. Our 
work makes use of considerable advances in model 
checking that have enabled model checkers to work 
effectively on models as complex as the ones we use 
here. Our work is most closely related to other work on 
inferring and verifying properties of interfaces such as 
APIs and SDKs, which we review briefly next. 

API and SDK misuses. It is no longer a mystery that 
APIs and SDKs can be misunderstood and the results 
often include security problems. On various UNIX sys-
tems, setuid and other related system calls are non-trivi-
al for programmers to understand. Chen et al. “demysti-
fied” (that is, explicated) these functions by comparing 
them on different UNIX versions and formally model-
ing these system calls as transitions in finite state auto-
mata [11]. Wang et al. showed logic bugs in how 
websites integrate third-party cashier services and sin-
gle-sign-on services [35][36]. Many of the bugs found 
appear to result from website developers’ confusions 
about API usage. Georgiev et al. showed that SSL certi-
ficate validations in many non-browser applications are 
broken, which make the applications vulnerable to 
network man-in-the-middle attacks [19]. Our work 
started from a different perspective — our primary goal 
is not to show that SDKs can be misused, but to argue 
that these misuses are so reasonable that it is SDK pro-
viders’ lapse not to explicate the SDKs to make their 
assumptions clear. We expect that our approach could 
be adapted to other contexts such as third-party pay-
ment and SSL certificate validation.  

Interface Verification. Many researchers have con-
sidered issues related to verifying interfaces and their 
use. Spinellis and Louridas [32] propose a static anal-
ysis framework for verifying Java API calls. Library 
developers are required to write imperative checking 
code for each API to assist the verification process. 
Henzinger et al. [1][7] propose languages and tools to 
help model the interfaces and find assumptions that 
need to be met for two APIs to be compatible, i.e., there 
is no environment for which they reach an error state. 
JIST [2] uses a similar approach to synthesize interface 
specifications for Java classes. This line of work is 
complementary to ours. Our main effort has been to 
systematically understand systems and construct se-
mantic models. Currently, we manually add assump-

tions when counterexamples are found in the models. 
The assumptions could be considered as a type of 
“interface specifications” of the SDKs. We believe that 
our semantic models would be even more valuable with 
tools that can automatically synthesize high-quality as-
sumptions. 

Software testing. Static techniques such as the Static 
Driver Verifier (SDV) for Windows drivers [4] and dy-
namic analysis such as symbolic execution [3][12] and 
fuzz testing [13][20] are widely studied in software test-
ing community. To test websites’ of single-sign-on 
authentications, Bai et al. developed AUTHSCAN [5], 
which is a technology to automatically recover an au-
thentication protocol from concrete website implemen-
tations. 

OAuth Protocol analyses. Bansal et al. [6] modeled 
OAuth 2.0 protocol and verified it using ProVerif [8]. 
They also built a library for future researchers to model 
web APIs into ProVerif language more easily. Pai et al. 
[31] used Alloy framework [23] to verify OAuth 2.0 
and discovered a previously known vulnerability. Sun 
et al. discussed a number of website problems affecting 
OAuth’s effectiveness, such as not using HTTPS, 
having XSS and CSRF bugs [33]. Although the three 
SDKs we studied are based on OAuth, our work does 
not focus particularly on the OAuth protocol. The fact 
that all three studied SDKs are based on OAuth is main-
ly because of its widespread adoption, but the security 
issues we found concern the SDKs and services rather 
than flaws inherent in the OAuth protocol.   

8 Final Remarks 

Security exploits nearly always stem from attackers 
finding ways to violate assumptions system implement-
ers relied upon. Such assumptions are often not care-
fully documented, and often only implicit in the minds 
of the system designers. Our study of three important 
authentication and authorization SDKs supports the 
need for systematically explicating SDKs to uncover 
these assumptions. We advocate that a systematic ex-
plication process should be part of the engineering 
process for developing SDKs. Although our current 
process still requires considerable manual effort in 
understanding and modeling system behaviors, we 
believe the need for this effort reveals flaws in the 
current engineering processes: SDK developers, 
including those building widely-used security-focused 
SDKs, have not systematically understood or 
documented the SDKs’ behaviors for producing secure 
applications. In our study, we found assumptions that 
were critical to secure use of the SDKs, but that were 
not clearly documented and were subtle enough to be 
missed by the majority of tested apps.  
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Appendix A.  Prevalence of SDKs. 

To understand how widely-used different SDKs are we 
first searched for keyword “Facebook” in the Windows 
App Store and filtered the results by selecting free and 
trial apps only, which left us with a total of 572 apps. 
We then sorted the results by users’ rating, after which 
we went through the top of the list one by one to check 
if the app has Facebook or Live connect SSO built-in. 
We also monitored network traffic using Fiddler on 
those apps that have SSO feature, and this allows us to 
eliminate the ones that do not run an online service. We 
excluded non-English apps and also apps that do not 
work properly. After the selection process we came up 
with a total of 27 apps as listed below:  

 
App Name SDK(s) 

Soluto WA(FB) 
Givit Unknown 

Fliptoast WA(FB) 

Donelo Unknown 
IM+ WA(FB)/LC 

Interference Live 
Norton Satellite Unknown 

Slide Ur buddy WA(FB) 

EuroCup Unknown 
Shufflr WA(FB) 

Social Umami Unknown 

SumAttack WA(FB) 

Guess Who WA(FB) 

Flixpicks WA(FB)/LC 

TwentyOne Unknown 

Apyo Unknown 

Where's my stuff Unknown 

Mahjong 31 Unknown 

Tic Challenge WA(FB) 

Color orbs Unknown 

tagmap WA(FB) 

word gap LC 

word town Unknown 

noots Unknown 

RecipeHouse WA(FB) 

Alaska Airlines Unknown 

Captain Dash LC 

 
WA(FB): Windows Auth Broker using Facebook IdP 
LC: Live Connect  
Unknown: We could not identify the observed authentication 
traffic. 
 
Appendix B. Additional Assumptions. 

The following assumptions were needed to complete 
the verification, but not included in Table 2 or Table 3 
since they do not appear to have any likely security 
consequences.  
 
C1: (Live Connect) 
There are two sets of Live Connect APIs, one of 
Microsoft apps and services, such as Skydrive, the other 
for non-Microsoft apps and services. We assume the 
two sets of APIs cannot be called together, i.e., any 
sequence of calling these APIs is confined to only one 
of the two sets. 
 
C2: (Live Connect, Windows Auth Broker) 
We assume no possibility of executing a script provided 
by Mallory/MalAppC inside FooAppC. (Actually, we 
are concerned that DOM methods like InvokeScript and 
ScriptNotify may violate this assumption, but have not 
yet identified a clear security issue.) 
 
C3: (all) 
As explained in Section 4.2, we assume that access 
token, Code, authentication token, app secret, app ID, 
user ID, session ID and so on are of different types, 
although in reality they are all strings. We do not allow 
type mismatches. 
 


